Single Pure - Discriminant

Given a quadratic expression $(ax^2 + bx + c)$ or equation $(ax^2 + bx + c = 0)$ the 'discriminant' is defined $b^2 - 4ac$. In the context of an equation we have: $b^2 - 4ac > 0 \Rightarrow$ Equation has two distinct roots. $b^2 - 4ac = 0 \Rightarrow$ Equation has one repeated root. $b^2 - 4ac < 0 \Rightarrow$ Equation has no real roots (but two complex roots in FP1). If the discriminant is zero this often hints at a tangent to a circle or a quadratic curve.

1. Calculate the discriminant for the following quadratic equations.

	(a) $3x^2 - 2x - 5 = 0$.	64
	(b) $x^2 = 3x + 1$.	13
	(c) $-x^2 + 6x = 2$.	28
	(d) $2x^2 - 3x + 1 = 3x^2 + 5x$.	68
	(e) $kx^2 + k = x$.	$1 - 4k^2$
	(f) $kx^2 + 2kx = k.$	$8k^2$
	(g) $x^2 + ax = bx + 1$.	$\boxed{a^2 - 2ab + b^2 + 4}$
	(h) $ax^2 + bx + c = bx^2 + cx + a$.	$b^2 + c^2 + 2bc - 4ac - 4ab + 4a^2$
2.	How many solutions does $4x^2 - 3x + 2 = 0$ have?	0
3.	How many solutions does $5x + 3x^2 = 20 - x$ have?	2
4.	How many solutions does $x^2 + kx - 5 = 0$ have?	2
5.	Find the value(s) of <i>k</i> for which $kx^2 + 5x + 1 = 0$ has exactly one solution	on. $k = \frac{25}{4}$
6.	Find the value(s) of k for which $x^2 + 1 = kx$ has two distinct solutions.	k > 2 or $k < -2$
7.	Find the value(s) of k for which $x^2 + kx = k$ has equal roots.	k = 0 or k = -4
8.	Find the value(s) of k for which $kx^2 - kx + 5 = 0$ has no real solutions.	0 < <i>k</i> < 20
9.	Find the value(s) of k for which $kx^2 = x + 1$ has two distinct solutions.	$k > -\frac{1}{4}$
10.	Find the value(s) of k for which $kx^2 + 2 = kx$ has no real solutions.	0 < k < 8
11.	Find the value(s) of k for which $x^2 + kx = x - 25$ has exactly one solution	On. $k = 11 \text{ or } k = -9$
12.	Find the value(s) of k for which $2x^2 + kx + 1 = 2x$ has exactly one solution	tion. $k = 2 \pm 2\sqrt{2}$
13.	Find the value(s) of t for which $tx^2 + 2tx + t = x$ has no real solutions.	$t > \frac{1}{4}$
14.	Find the value(s) of k for which $ax^2 - kx + a = 0$ has two distinct solut	ions. $k > 2a \text{ or } k < -2a$
15.	Find the value(s) of <i>c</i> for which $y = 4x + c$ lies tangent to $y = x^2 + 6x + c$	-1.
16.	Find the value(s) of <i>m</i> for which $y = mx - 2$ lies tangent to $y = x^2$.	$m = \pm 2\sqrt{2}$
17.	Find the value(s) of <i>m</i> for which $y = mx - 3$ lies tangent to $y = x^2 + 1$.	$m = \pm 4$
18.	Find the value(s) of <i>c</i> for which $y = x + c$ lies tangent to the circle $x^2 + c$	$y^2 = 4. \qquad c = \pm 2\sqrt{2}$
19.	Find the value(s) of <i>c</i> for which $y = 2x + c$ lies tangent to $x^2 + y^2 = 9$.	$c = \pm 3\sqrt{5}$

20. Find the value(s) of *m* for which y = mx - 3 lies tangent to the circle $x^2 + (y - 1)^2 = 1$.

 $m = \pm \sqrt{15}$

- 21. In this question a and b are distinct, non-zero real numbers, and c is a real number.
 - (a) Show that, if *a* and *b* are either both positive or both negative, then the equation

$$\frac{x}{x-a} + \frac{x}{x-b} = 1$$

has two distinct real solutions.

(b) Show that the equation

$$\frac{x}{x-a} + \frac{x}{x-b} = 1 + c$$

has exactly one real solution if $c^2 = -\frac{4ab}{(a-b)^2}$. Show that this condition can be written $c^2 = 1 - \left(\frac{a+b}{a-b}\right)^2$ and deduce that it can only hold if $0 < c^2 \le 1$. [STEP I 2005]