Single Pure - Discriminant

Given a quadratic expression (ax? + bx +c) or equation (ax?+bx +c = 0) the ‘discriminant’ is defined
b — 4ac. In the context of an equation we have:

b? — 4ac > 0 = Equation has two distinct roots.

b? — 4ac = 0 = Equation has one repeated root.

b? — 4ac < 0 = Equation has no real roots (but two complex roots in FP1).

If the discriminant is zero this often hints at a tangent to a circle or a quadratic curve.

1. Calculate the discriminant for the following quadratic equations.

() 3x>-2x-5=0 64
b) x2=3x+1
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(c) —x>+6x=2.

(d) 2x% - 3x+1=3x>+5x.
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g x2+ax =bx+1. a2 ~2ab + b2 + 4

h) ax?+ bx +c¢ = bx®>+cx + a. b2 + ¢2 + 2be — 4ac — 4ab + 4a>

2. How many solutions does 4x%2 = 3x + 2 = 0 have?

=]

3. How many solutions does 5x + 3x2 =20 — x have?
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4. How many solutions does x2 + kx =5 = 0 have?
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5. Find the value(s) of k for which kx? + 5x + 1 = 0 has exactly one solution.

6. Find the value(s) of k for which x2 + 1 = kx has two distinct solutions. k>2ork <2

7. Find the value(s

(
(
(
(

of k for which x? + kx = k has equal roots. K =0Oork = —
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8. Find the value(s) of k for which kx% — kx + 5 = 0 has no real solutions.
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9. Find the value(s) of k for which kx2 = x + 1 has two distinct solutions.
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10. Find the value(s) of k for which kx? + 2 = kx has no real solutions.

11. Find the value(s) of k for which x2 + kx = x — 25 has exactly one solution. K=1lork=—9
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12. Find the value(s) of k for which 2x% + kx + 1 = 2x has exactly one solution.

13. Find the value(s) of ¢ for which ¢x2 + 2¢x + ¢ = x has no real solutions.

1
14. Find the value(s) of k for which ax? — kx + a = 0 has two distinct solutions.
15. Find the value(s) of ¢ for which y = 4x + ¢ lies tangent to y = x> + 6x + 1. c=0
16. Find the value(s) of m for which y = mx — 2 lies tangent to y = x°.
17. Find the value(s) of m for which y = mx — 3 lies tangent to y = x> + 1. m = x4
18. Find the value(s) of ¢ for which y = x + ¢ lies tangent to the circle x> + y? = 4. c=+2V3
19. Find the value(s) of ¢ for which y = 2x + ¢ lies tangent to x> + y* = 9. c=43V5
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20. Find the value(s) of m for which y = mx — 3 lies tangent to the circle x> + (y — 1)* = 1.
m= V15

21. In this question a and b are distinct, non-zero real numbers, and ¢ is a real number.

(a) Show that, if a and b are either both positive or both negative, then the equation

X X
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x—a x-b

has two distinct real solutions.
(b) Show that the equation
AN S c
x—a x-b

has exactly one real solution if ¢ = —%. Show that this condition can be written
?=1- (%)2 and deduce that it can only hold if 0 < ¢* < 1. [STEP 12005]
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